Codigo Genetico

El código genético es el conjunto de normas por las que la información codificada en el material genético (secuencias de ADN o ARN) se traduce en proteínas (secuencias de aminoácidos) en las células vivas. El código define la relación entre secuencias de tres nucleótidos, llamadas codones, y aminoácidos. Un codón se corresponde con un aminoácido específico.
La secuencia del material genético se compone de cuatro bases nitrogenadas distintas, que tienen una función equivalente a letras en el código genético: adenina (A), timina (T), guanina (G) y citosina (C) en el ADN y adenina (A), uracilo (U), guanina (G) y citosina (C) en el ARN.
Debido a esto, el número de codones posibles es 64, de los cuales 61 codifican aminoácidos (siendo además uno de ellos el codón de inicio, AUG) y los tres restantes son sitios de parada (UAA, llamado ocre; UAG, llamado ámbar; UGA, llamado ópalo). La secuencia de codones determina la secuencia aminoacídica de una proteína en concreto, que tendrá una estructura y una función específicas.




CARACTERISTICAS

Universalidad
El código genético es compartido por todos los organismos conocidos, incluyendo virus y organulos, aunque pueden aparecer pequeñas diferencias. Así, por ejemplo, el codón UUU codifica para el animoácido fenilalanina tanto en bacterias, como en arqueas y en eucariontes. Este hecho indica que el código genético ha tenido un origen único en todos los seres vivos conocidos.
Gracias a la genética molecular, se han distinguido 22 códigos genéticos, que se diferencian del llamado código genético estándar por el significado de uno o más codones. La mayor diversidad se presenta en las mitocondrias, orgánulos de las células eucariotas que se originaron evolutivamente a partir de miembros del dominio Bacteria a través de un proceso de endosimbiosis. El genoma nuclear de los eucariotas sólo suele diferenciarse del código estándar en los codones de iniciación y terminación.

 Especificidad y continuidad

Ningún codón codifica más de un aminoácido, ya que, de no ser así, conllevaría problemas considerables para la síntesis de proteínas específicas para cada gen. Tampoco presenta solapamiento: los tripletes se hallan dispuesto de manera lineal y continua, de manera que entre ellos no existan comas ni espacios y sin compartir ninguna base nitrogenada. Su lectura se hace en un solo sentido (5' - 3'), desde el codón de iniciación hasta el codón de parada. Sin embargo, en un mismo ARNm pueden existir varios codones de inicio, lo que conduce a la síntesis de varios polipéptidos diferentes a partir del mismo transcrito.

 Degeneración

El código genético tiene redundancia pero no ambigüedad (ver tablas de codones). Por ejemplo, aunque los codones GAA y GAG especifican los dos el ácido glutámico (redundancia), ninguno específica otro aminoácido (no ambigüedad). Los codones que codifican un aminoácido pueden diferir en alguna de sus tres posiciones, por ejemplo, el ácido glutámico se específica por GAA y GAG (difieren en la tercera posición), el aminoácido leucina se específica por los codones UUA, UUG, CUU, CUC, CUA y CUG (difieren en la primera o en la tercera posición), mientras que en el caso de la serina, se específica por UCA, UCG, UCC, UCU, AGU, AGC (difieren en la primera, segunda o tercera posición).
De una posición de un codón se dice que es cuatro veces degenerada si con cualquier nucleótido en esta posición se específica el mismo aminoácido. Por ejemplo, la tercera posición de los codones de la glicina (GGA, GGG, GGC, GGU) es cuatro veces degenerada, porque todas las sustituciones de nucleótidos en este lugar son sinónimos; es decir, no varían el aminoácido. Sólo la tercera posición de algunos codones puede ser cuatro veces degenerada. Se dice que una posición de un codón es dos veces degenerada si sólo dos de las cuatro posibles sustituciones de nucleótidos especifican el mismo aminoácido. Por ejemplo, la tercera posición de los codones del ácido glutámico (GAA, GAG) es doble degenerada. En los lugares dos veces degenerados, los nucleótidos equivalentes son siempre dos purinas (A/G) o dos pirimidinas (C/U), así que sólo sustituciones transversionales (purina a pirimidina o pirimidina a purina) en dobles degenerados son antónimas. Se dice que una posición de un codón es no degenerada si una mutación en esta posición tiene como resultado la sustitución de un aminoácido. Sólo hay un sitio triple degenerado en el que cambiando tres de cuatro nucleótidos no hay efecto en el aminoácido, mientras que cambiando los cuatro posibles nucleótidos aparece una sustitución del aminoácido. Esta es la tercera posición de un codón de isoleucina: AUU, AUC y AUA, todos codifican isoleucina, pero AUG codifica metionina. En biocomputación, este sitio se trata a menudo como doble degenerado.
Hay tres aminoácidos codificados por 6 codones diferentes: serina, leucina, arginina. Sólo dos aminoácidos se especifican por un único codón; uno de ellos es la metionina, especificado por AUG, que también indica el comienzo de la traducción; el otro es triptófano, especificado por UGG. Que el código genético sea degenerado es lo que determina la posibilidad de mutaciones sinónimas.
La degeneración aparece porque el código genético designa 20 aminoácidos y la señal parada. Debido a que hay cuatro bases, los codones en triplete se necesitan para producir al menos 21 códigos diferentes. Por ejemplo, si hubiera dos bases por codón, entonces sólo podrían codificarse 16 aminoácidos (4²=16). Y dado que al menos se necesitan 21 códigos, 4³ da 64 codones posibles, indicando que debe haber degeneración.
Esta propiedad del código genético lo hacen más tolerante a los fallos en mutaciones puntuales. Por ejemplo, en teoría, los codones cuatro veces degenerados pueden tolerar cualquier mutación puntual en la tercera posición, aunque el codón de uso sesgado restringe esto en la práctica en muchos organismos; los dos veces degenerados pueden tolerar una de las tres posibles mutaciones puntuales en la tercera posición. Debido a que las mutaciones de transición (purina a purina o pirimidina a pirimidina) son más probables que las de transversión (purina a pirimidina o viceversa), la equivalencia de purinas o de pirimidinas en los lugares dobles degenerados añade una tolerancia a los fallos complementaria.

 http://es.wikipedia.org/wiki/C%C3%B3digo_gen%C3%A9tico